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LETTER TO THE EDITOR 

Lagrangian-Hamiltonian formulation for stationary flows of 
some class of nonlinear dynamica'l systems 

Maciej Blaszakt 
Departamento de Fisica, Univenidade da Beira Interior, 6200 Covilhi, Portugal 

Received 20 November 1992 

Absblet. We wmVUct Lagrangian and Hamiltonian functions for stationary Bows ofsome 
class of Hamiltonian nonlinear dynamical systems. The method is illustrated by the example 
of stationary Bows of Sawada-Kotera hierarchy. 

Let us consider the (2n +3)th order Hamiltonian evolution equation 

8%-U1 U, = B ( u )  ~ 

SU 

where 

B ( u )  = J3+ auJ+ aJu a = const (2) 

is a Poisson operator, %[U] = %(ti, U,, . . . , unx) is a differential function of order n 
and 6 / S u  is a variational derivative. Its stationary equation has the form 

8 ' w U l  (a3+ aua+ aau)  -=o 
SU 

(3) 

and we are looking for a Lagrangian representation of (3). 
Let y = 8%'/8u, so (3) reads 

y- + 2auyx + au,y = 0. (4) 

Multiplying (4) by y and integrating once we obtain 

yy= - iy:+ auy' = ia2a 

y = - 4 Lau2 ( 6 )  

2v3uv,+auv4= a. (7) 

( 5 )  

where (Y is the integration constant. Introducing a new variable U 

we transform ( 5 )  to the form 
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Thus, the stationary equation (3) is equivalent to the pair of equations (6) and (7), 
that is 

a !EM+ tau’= 0 U, +$am - - = O .  
SU 2u3 

But equations (8) come. from the Euler-Lagrange equation S9=0, where 
S= ( S l S u ,  S/Sv) ’  and 

( 9 )  
(Y 9[ U, U] = %[U] + jauu2 - Ju:+- 

402 ’ 

In the case of non-degenerated flu], i.e. for &%/dum # 0, we can construct the 
canonical Hamiltonian representation of (3) in terms of so-called Ostrogradsky vari- 
ables [I]  through a generalized Legendre transformation [2] 

q h  q k - l ) x  pk = S9/SU, k =  1, .. . , n 

q n + l =  0 pn+l = S 9 / S u x  = -0, (10) 

Mq, P) = -q”+ ,P”+ I + qAq. L + c P&+r - 2 
“-1 

k-1 

where qh, p k  are conjugate variables and h(q, p )  is a Hamiltonian function. 
We illustrate our approach on the example of stationary flow of seventh-order 

~~ 

Sawada-Kotera equation: 

0 =(a3+ aud+ adu) - (Iu2 -:auu:+&a’u‘) 
6 

Su ’ IX 

= (d’+aud+ adu)(u4, +$auu,, +&au: +ba2u3) 
= u,,+$auu,,+~au,u,, + ~ a u , , u , , + ~ a  7 2  uu3.i~a’u,u,,u,,+ia2u: 

~~ +ga3u3u,. 

The system (11) is equivalent to the following one 

u ~ , + ~ a u u , , + ~ u ~ + ~ a 2 u 3 i  $au - 
vZr + lauu - ( a / 2 u 3 )  = 0 

-01 0 &Y = 0 

where 
a 9= tu: ,  -iauu:- $u:+$a2u4+ &mu2+-. ~ ~ 

4u2 

It is also a canonical Hamiltonian system in Ostrogradsky variables 

91 = U  p ,  = -$amx - u3, 

q 2  = U, P2 = u u  

93=v p3=-vz  

with the Hamiltonian function 

(Y 1 2 4  h(q, P) = h4 + b: +pLq2 -p3q3 + 2 w :  -=a 41 - f a q d  -7. 
4% 
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In the special case of the fifth-order Sawada-Kotera stationary Row, Ostrogradsky 
representation (10) turns out to be a generalized Henon-Heiles representation [3]. 

This work was partially supported by a stypendy AdT/MLH ref 304/31 from Swedish 
Institute. 
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